C++ for Loop

In computer programming, loops are used to repeat a block of code.
For example, let's say we want to show a message 100 times. Then instead of writing the print statement 100 times, we can use a loop.

That was just a simple example; we can achieve much more efficiency and sophistication in our programs by making effective use of loops.

There are 3 types of loops in C++.

- for loop
- while loop
- do...while loop

This tutorial focuses on C++ for loop. We will learn about the other type of loops in the upcoming tutorials.

C++ for loop

The syntax of for-loop is:

```
for (initialization; condition; update) {
    // body of-loop
}
```

Here,

- initialization - initializes variables and is executed only once
- condition - if true, the body of for loop is executed if false, the for loop is terminated
- update - updates the value of initialized variables and again checks the condition

To learn more about conditions, check out our tutorial on C++ Relational and Logical Operators.

Flowchart of for Loop in C++

Loop Terminates

Example 1: Printing Numbers From 1 to 5

```
#include <iostream>
using namespace std;
int main() {
    for (int i = 1; i <= 5; ++i) {
    cout << i << " ";
    }
    return 0;
```

Output

12345

Here is how this program works

Iteration	Variable	i<= 5	Action
1st	$i=1$	true	1 is printed. i is increased to 2.
2nd	$i=2$	true	2 is printed. i is increased to 3.
3rd	$i=3$	true	3 is printed. i is increased to 4.
4th	$i=4$	true	4 is printed. i is increased to 5 .
5th	$i=5$	true	5 is printed. i is increased to 6.
6th	$i=6$	false	The loop is terminated

Example 2: Display a text 5 times

```
// C++ Program to display a text 5 times
#include <iostream>
using namespace std;
int main() {
    for (int i = 1; i <= 5; ++i) {
        cout << "Hello World! " << endl;
    }
    return 0;
```


Output

```
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
```

Here is how this program works

Iteration	Variable	i < $=5$	Action
$1^{\text {st }}$	i $=1$	true	Hello World! is printed and i is increased to 2.
$2^{\text {nd }}$	$i=2$	true	Hello World! is printed and i is increased to 3.
$3^{\text {rd }}$	$i=3$	true	Hello World! is printed and i is increased to 4.
$4^{\text {th }}$	$i=4$	true	Hello World! is printed and i is increased to 5 .
$5^{\text {th }}$	$i=5$	true	Hello World! is printed and i is increased to 6.
$6^{\text {th }}$	$i=6$	false	The loop is terminated

Example 3: Find the sum of first n Natural Numbers

```
// C++ program to find the sum of first n natural numbers
// positive integers such as 1,2,3,...n are known as natural numbers
#include <iostream>
using namespace std;
int main() {
    int num, sum;
    sum = 0;
    cout << "Enter a positive integer: ";
    cin >> num;
    for (int i = 1; i <= num; ++i) {
        sum += i;
    }
    cout << "Sum = " << sum << endl;
    return 0;
```

\}

Output

```
Enter a positive integer: 10
Sum = 55
```

In the above example, we have two variables num and sum. The sum variable is assigned with 0 and the num variable is assigned with the value provided by the user.

Note that we have used a for loop.

```
for(int i = 1; i <= num; ++i)
```

Here,

- int i = 1: initializes the i variable
- i<= num: runs the loop as long as i is less than or equal to num
- ++i: increases the i variable by 1 in each iteration

When i becomes 11, the condition is false and sum will be equal to $0+1+2+\ldots$ $+10$.

C++ Infinite for loop

If the condition in a for loop is always true, it runs forever (until memory is full).
For example,

```
// infinite for loop
```

for (int i = 1; i > 0; i++) \{
// block of code
\}

In the above program, the condition is always true which will then run the code for infinite times.

C++ Program to Calculate Sum of Natural Numbers

Positive integers 1, 2, 3, 4... are known as natural numbers.

This program takes a positive integer from user(suppose user entered n) then, this program displays the value of $1+2+3+\ldots .+n$.

Example: Sum of Natural Numbers using loop

```
#include <iostream>
using namespace std;
int main() {
    int n, sum = 0;
    cout << "Enter a positive integer: ";
    cin >> n;
    for (int i = 1; i <= n; ++i) {
        sum += i;
    }
    cout << "Sum = " << sum;
    return 0;
}
```

Output

```
Enter a positive integer: 50
Sum = 1275
```

This program assumes that user always enters positive number.
If user enters negative number, Sum $=\mathbf{0}$ is displayed and program is terminated.

C++ Program to Find Factorial

The factorial of a number is the product of all the integers from $\mathbf{1}$ up to that number. The factorial can only be defined for positive integers.
The factorial of a negative number doesn't exist. And the factorial of $\mathbf{0}$ is $\mathbf{1}$.
For example,
The factorial of a positive number n, say 5, is denoted by 5! and is given by:

```
5! = 1*2*3*4*5 = 120
```

So, the Mathematical logic for factorial is:

```
n! = 1 * 2 * 3 * ... * n
n! = 1 if n = 0 or n = 1
```

In this program, the user is asked to enter a positive integer. Then the factorial of that number is computed and displayed on the screen.

Example: Find the Factorial of a Given Number

```
#include <iostream>
using namespace std;
int main() {
    int n;
    long factorial = 1.0;
    cout << "Enter a positive integer: ";
    cin >> n;
    if (n < 0)
        cout << "Error! Factorial of a negative number doesn't exist.";
    else {
        for(int i = 1; i <= n; ++i) {
            factorial *= i;
        }
        cout << "Factorial of " << n << " = " << factorial;
    }
    return 0;
```


Output

```
Enter a positive integer: 4
Factorial of 4 = 24
```

In this program, we take a positive integer from the user and compute the factorial using for loop. We print an error message if the user enters a negative number.

We declare the type of factorial variable as long since the factorial of a number may be very large.
When the user enters a positive integer (say 4), for loop is executed and computes the factorial. The value of i is initially 1 .

The program runs until the statement $\mathrm{i}<=\mathrm{n}$ becomes false. This prints Factorial of $4=24$ on the screen. Here's how the program executes when $n=4$.

$$
i<=4 \quad \text { fact } *=i
$$

$1<=4$

$$
\text { fact }=1^{*} 1=1
$$

$$
2<=4
$$

$$
\text { fact }=1 * 2=2
$$

$3<=4$
fact $=2 * 3=6$
$4<=4$
fact $=6 * 4=24$
$5<=4$
Loop terminates.

Note: This program can calculate the factorial only up to the number 20. Beyond that, the program can no longer calculate the factorial as the results exceed the capacity of the factorial variable.

C++ Program

Example 1: Display Multiplication Table up to 10

```
#include <iostream>
using namespace std;
int main() {
    int n;
    cout << "Enter a positive integer: ";
    cin >> n;
    // run a loop from 1 to 10
    // print the multiplication table
    for (int i = 1; i <= 10; ++i) {
        cout << n << " * " << i << " = " << n * i << endl;
    }
    return 0;
}
Run Code
```


Output

```
Enter a positive integer: 5
5*1 = 5
5*2 = 10
5* 3 = 15
5*4=20
5*5 = 25
5* 6 = 30
5* 7 = 35
5 * 8 = 40
5* 9 = 45
```

$5 * 10=50$

This program above computes the multiplication table up to 10 only.

Example 2: Display Multiplication Table up to a Given Range

The program below is a modification of the above program in which the user is asked to enter the range up to which the multiplication table should be displayed.

```
#include <iostream>
using namespace std;
int main() {
    int n, range;
    cout << "Enter an integer: ";
    cin >> n;
    cout << "Enter range: ";
    cin >> range;
    for (int i = 1; i <= range; ++i) {
        cout << n << " * " << i << " = " << n * i << endl;
    }
    return 0;
}
Run Code
```


Output

```
Enter an integer: 8
Enter range: 12
8* 1 = 8
8 * 2 = 16
8*3 = 24
8*4 = 32
8* 5 = 40
8*6 = 48
8*7 = 56
8* 8 = 64
8* 9 = 72
8* 10=80
8* 11 = 88
8*12=96
```

